2,009 research outputs found

    Is there any evidence that ionised outflows quench star formation in type 1 quasars at z<1?

    Get PDF
    The aim of this paper is to test the basic model of negative AGN feedback. According to this model, once the central black hole accretes at the Eddington limit and reaches a certain critical mass, AGN driven outflows blow out gas, suppressing star formation in the host galaxy and self-regulating black hole growth. We consider a sample of 224 quasars selected from the SDSS at z<1 observed in the infrared band by Herschel. We evaluate the star formation rate in relation to several outflow signatures traced by the [OIII]4959,5007 and [OII]3726,3729 emission lines in about half of the sample with high quality spectra. Most of the quasars show asymmetric and broad wings in [OIII], which we interpret as outflow signatures. We separate the quasars in two groups, ``weakly'' and ``strongly'' outflowing, using three different criteria. When we compare the mean star formation rate in five redshift bins in the two groups, we find that the SFRs are comparable or slightly larger in the strongly outflowing quasars. We estimate the stellar mass from SED fitting and the quasars are distributed along the star formation main sequence, although with a large scatter. The scatter from this relation is uncorrelated with respect to the kinematic properties of the outflow. Moreover, for quasars dominated in the infrared by starburst or by AGN emission, we do not find any correlation between the star formation rate and the velocity of the outflow, a trend previously reported in the literature for pure starburst galaxies. We conclude that the basic AGN negative feedback scenario seems not to agree with our results. Although we use a large sample of quasars, we did not find any evidence that the star formation rate is suppressed in the presence of AGN driven outflows on large scale. A possibility is that feedback is effective over much longer timescales than those of single episodes of quasar activity.Comment: 18 pages, new version that implements the suggestions of the referee and matches the AA published versio

    Phase and coherence analysis of VHF scintillation over Christmas Island

    Get PDF
    This short paper presents phase and coherence data from the cross-wavelet transform applied on longitudinally separated very high frequency (VHF) equatorial ionospheric scintillation observations over Christmas Island. The phase and coherence analyses were employed on a pair of scintillation observations, namely, the east-looking and west-looking VHF scintillation monitors at Christmas Island. Our analysis includes 3 years of peak season scintillation data from 2008, 2009 (low solar activity), and 2011 (moderate solar activity). In statistically significant and high spectral coherence regions of the cross-wavelet transform, scintillation observations from the east-looking monitor lead those from the west-looking monitor by about 20 to 60 (40 ± 20) min (most frequent lead times). Using several years (seasons and solar cycle) of lead (or lag) and coherence information of the cross-wavelet transform, we envisage construction of a probability model for forecasting scintillation in the nighttime equatorial ionosphere

    New Clues on the Nature of Extremely Red Galaxies

    Get PDF
    We present near-infrared VLT-UT1+ISAAC spectroscopy of a sample of 9 extremely red galaxies (ERGs) with R-K>5 and K<19.0. Neither strong emission lines (F_lim<1-5 10^{-16} erg s^{-1}cm^{-2}) nor continuum breaks are detected. From near-infrared spectrophotometry, complemented with broad-band optical and near-IR photometry, we estimate ``spectro-photometric'' redshifts to be in the range of 0.8<z_sphot<1.8. We derive upper limits on the star formation rates in range of SFR<6-30h_50^{-2} M_solar yr^{-1}. Two of the observed ERGs are dusty starburst candidates because they require strong dust reddening to reproduce their global spectral energy distributions. The other ERGs are consistent with being dustless old passively evolved spheroidals at z>0.8. We discuss the general implications of our findings in relation with the problem of the formation of early type galaxies.Comment: 6 pages, 2 figures. Astronomy & Astrophysics (Letters), in pres

    On the fraction of intermediate-mass close binaries that explode as type-Ia supernovae

    Full text link
    Type-Ia supernovae (SNe-Ia) are thought to result from a thermonuclear runaway in white dwarfs (WDs) that approach the Chandrasekhar limit, either through accretion from a companion or a merger with another WD. I compile observational estimates of the fraction eta of intermediate-mass stars that eventually explode as SNe-Ia, supplement them with several new estimates, and compare them self-consistently. The estimates are based on five different methods, each utilising some observable related to the SN-Ia rate, combined with assumptions regarding the IMF: the ratio of SN-Ia to core-collapse rates in star-forming galaxies; the SN-Ia rate per unit star-formation rate; the SN-Ia rate per unit stellar mass; the iron to stellar mass ratio in galaxy clusters; and the abundance ratios in galaxy clusters. The five methods indicate that a fraction in the range eta~2-40% of all stars with initial masses of 3-8 M_sun (the generally assumed SN-Ia progenitors) explode as SNe-Ia. A fraction of eta~15% is consistent with all five methods for a range of plausible IMFs. Considering also the binarity fraction among such stars, the mass ratio distribution, the separation distribution, and duplicity (every binary can produce only one SN-Ia explosion), this implies that nearly every intermediate mass close binary ends up as a SN-Ia, or possibly more SNe-Ia than progenitor systems. Theoretically expected fractions are generally one to two orders of magnitude lower. The problem could be solved: if all the observational estimates are in error; or with a ``middle-heavy'' IMF; or by some mechanism that strongly enhances the efficiency of binary evolution toward SN-Ia explosion; or by a non-binary origin for SNe-Ia.Comment: MNRAS, accepted versio

    Discovery of strong CIV absorption in the highest redshift quasar

    Get PDF
    We report the near-IR detection of a prominent CIV absorption in the rest-frame UV spectrum of the most distant known QSO, SDSS J104433.04-012502.2, at z=5.80. This QSO was recently observed with XMM-Newton and it was found to be notably X-ray weak. The equivalent width of the CIV absorption feature (~10 A) strongly supports the idea that the X-ray faintness of this QSO is due to heavy absorption by gas with a column density N_H > 10^{24} cm^-2. The shape of the CIV feature suggests that this is a Broad Absorption Line QSO. Although absorbed by a huge column of gas, the observed continuum in the 0.9-2.4um range (~1300-3500 A rest frame) exactly matches the template of unabsorbed QSOs without invoking any reddening (E(B-V)<0.08 mag), indicating that dust in the absorbing gas is either absent or composed of large grains.Comment: 4 pages, 2 figures, accepted for publication in A&A Letter

    On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    Get PDF
    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the build-up of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are consistent with observations in the field, cluster Fe enrichment immediately tracks a rapid, top-heavy phase of star formation -- although transport of Fe into the ICM may be more prolonged and star formation likely continues to redshifts <1. The source of this prompt enrichment is Type II supernovae (SNII) yielding at least 0.1 solar masses per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3-8 solar mass range) and/or SNIa explosions with short delay times associated with the rapid star formation mode. Star formation is >3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.Comment: 51 pages including 26 figures and 2 tables, accepted for publication in ApJ 5/4/0

    Gas-phase metallicity of 27 galaxies at intermediate redshift

    Full text link
    The purpose of this work is to make available new gas-phase oxygen abundance measurements for a serendipitous sample of 27 galaxies with redshift 0.35<z<0.52. We measured the equivalent widths of the [O II]{\lambda}3727, H{\beta}, and [O III]{\lambda}{\lambda}4959, 5007 emission lines observed in the galaxy spectra obtained with the Visible Multi-Object Spectrograph mounted at the Very Large Telescope. For each galaxy, we derived the metallicity-sensitive emission lines ratio R23, ionization-sensitive emission lines ratio O32, and gas-phase oxygen abundance 12+log(O/H). The values of gas-phase oxygen abundance 12+log(O/H) we obtained for the sample galaxies are consistent with previous findings for galaxies at intermediate redshift.Comment: 5 pages, 3 postscript figures and 3 tables. A&A in pres

    Five supernova survey galaxies in the southern hemisphere. II. The supernova rates

    Full text link
    Based on the database compiled in the first article of this series, with 56 SN events discovered in 3838 galaxies of the southern hemisphere, we compute the rate of supernovae (SNe) of different types along the Hubble sequence normalized to the optical and near-infrared luminosities as well as to the stellar mass of the galaxies. We find that the rates of all SN types show a dependence on both morphology and colors of the galaxies, and therefore, on the star-formation activity. The rate of core-collapse (CC) SNe is confirmed to be closely related to the Star Formation Rate (SFR) and only indirectly to the total mass of the galaxies. The rate of SNe Ia can be explained by assuming that at least 15% of Ia events in spiral galaxies originates in relatively young stellar populations. We find that the rates show no modulation with nuclear activity or environment. The ratio of SN rates between types Ib/c and II shows no trend with spiral type.Comment: 13 pages, 2 figures, 5 tables, published in Astrophysics (English translation of Astrofizika
    corecore